1、将mapred-site.xml文件拷贝一份到项目中
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapred.child.java.opts</name> <value>-Xmx800m -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address= 8000 </value> </property> <property> <name>mapreduce.jobtracker.staging.root.dir</name> <value>/tmp</value> </property> <property> <name>yarn.app.mapreduce.am.staging-dir</name> <value>/tmp</value> </property> <property> <name>mapreduce.framework.name</name> <value>local</value> </property> <property> <name>mapreduce.jobtracker.address</name> <value>local</value> </property> <property> <name>mapred.job.tracker</name> <value>local</value> </property> </configuration> |
2、在项目中加入本地mapred-site.xml配置,从本地项目中读取配置文件运行,在reduce中debug
1
2
3
4
5
6
7
|
Job job = new Job(conf, "word count" ); conf.addResource( "classpath:/Hadoop01/mapred-site.xml" ); conf.set( "fs.defaultFS" , "hdfs://192.168.1.10:9008" ); conf.set( "mapreduce.framework.name" , "yarn" ); conf.set( "yarn.resourcemanager.address" , "192.168.1.10:8032" ); conf.set( "mapred.remote.os" , "Linux" ); conf.set( "hadoop.job.ugi" , "hadoop,hadoop" ); |