对于如何编译WordCount.java,对于0.20 等旧版本版本的做法很常见,具体如下:
javac -classpath /usr/local/hadoop/hadoop-<span style="color: #800080;">1.0</span>.<span style="color: #800080;">1</span>/hadoop-core-<span style="color: #800080;">1.0</span>.<span style="color: #800080;">1</span>.jar WordCount.java
但较新的 2.X 版本中,已经没有 hadoop-core*.jar 这个文件,因此编辑和打包自己的MapReduce程序与旧版本有所不同。
本文以 Hadoop 2.6环境下的WordCount实例来介绍 2.x 版本中如何编辑自己的MapReduce程序。
Hadoop 2.x 版本中的依赖 jar
Hadoop 2.x 版本中jar不再集中在一个 hadoop-core*.jar 中,而是分成多个 jar,如运行WordCount实例需要如下三个 jar:
$HADOOP_HOME/share/hadoop/common/hadoop-common-2.6.0.jar
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar
$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar
编译、打包 Hadoop MapReduce 程序
将上述 jar 添加至 classpath 路径:
hadoop@ubuntu:~$ export CLASSPATH=<span style="color: #800000;">"</span><span style="color: #800000;">$HADOOP_HOME/home/hadoop/opt/hadoop-2.6.0/share/hadoop/common/hadoop-common-2.6.0.jar:$HADOOP_HOME/home/hadoop/opt/hadoop-2.6.0/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar:$HADOOP_HOME/home/hadoop/opt/hadoop-2.6.0/share/hadoop/common/lib/commons-cli-1.2.jar:$CLASSPATH</span><span style="color: #800000;">"</span>
接着就可以编译 WordCount.java 了(使用的是 2.6.0源码中的 WordCount.java)
文件位于/hadoop-2.6.0-src/hadoop-mapreduce-project/hadoop-mapreduce-examples/src/main/java/org/apache/hadoop/examples 中,
javac WordCount.java
编译时会有警告,可以忽略。编译后可以看到生成了几个.class文件。
/home/hadoop/opt/hadoop-2.6.0/share/hadoop/common/hadoop-common-2.6.0.jar(org/apache/hadoop/fs/Path.class): warning: Cannot find annotation method ‘value()’ in type ‘LimitedPrivate’: class file for org.apache.hadoop.classification.InterfaceAudience not found
1 warning
hadoop@ubuntu:~/opt/code$ ls
WordCount.class WordCount.java WordCount$MapClass.class WordCount$Reduce.class
接着把 .class 文件打包成 jar,才能在 Hadoop 中运行:
hadoop@ubuntu:~/opt/code$ jar -cvf WordCount.jar ./WordCount*.class
added manifest
adding: WordCount.class(in = 3363) (out= 1687)(deflated 49%)
adding: WordCount$MapClass.class(in = 1978) (out= 800)(deflated 59%)
adding: WordCount$Reduce.class(in = 1641) (out= 645)(deflated 60%)
创建HDFS所需的输入文件夹:
hadoop@ubuntu:~/opt/code$ mkdir input
hadoop@ubuntu:~/opt/code$ echo “Hello Hadoop Goodbye Hadoop” > ./input/file1
hadoop@ubuntu:~/opt/code$ echo “Hello World Bye World” > ./input/file2
hadoop@ubuntu:~/opt/code$ ls ./input
file1 file2
运行我们的wordcount程序:
hadoop@ubuntu:~$ cd ~/opt/code
hadoop@ubuntu:~/opt/code$ ~/opt/hadoop-2.6.0/bin/hadoop jar WordCount.jar org.apache.hadoop.examples.WordCount input output
程序运行完之后,检查我们的输出结果:
hadoop@ubuntu:~/opt/code$ <span style="color: #0000ff;">ls</span> ./<span style="color: #000000;">output</span>
part-r-00000 _SUCCESS
hadoop@ubuntu:~/opt/code$ cat ./output/part-r-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2
PS:WordCount.java 源代码如下:
<span style="color: #0000ff;">package</span><span style="color: #000000;"> org.apache.hadoop.mapred;</span>
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* This is an example Hadoop Map/Reduce application.
* It reads the text input files, breaks each line into words
* and counts them. The output is a locally sorted list of words and the
* count of how often they occurred.
*
* To run: bin/hadoop jar build/hadoop-examples.jar wordcount
* [-m <i>maps</i>] [-r <i>reduces</i>] <i>in-dir</i> <i>out-dir</i>
*/
public class WordCount extends Configured implements Tool {
/**
* Counts the words in each line.
* For each line of input, break the line into words and emit them as
* (<b>word</b>, <b>1</b>).
*/
public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);
}
}
}
/**
* A reducer class that just emits the sum of the input values.
*/
public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
static int printUsage() {
System.out.println(“wordcount [-m <maps>] [-r <reduces>] <input> <output>”);
ToolRunner.printGenericCommandUsage(System.out);
return -1;
}
/**
* The main driver for word count map/reduce program.
* Invoke this method to submit the map/reduce job.
* @throws IOException When there is communication problems with the
* job tracker.
*/
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName(“wordcount”);
// the keys are words (strings)
conf.setOutputKeyClass(Text.class);
// the values are counts (ints)
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(MapClass.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
List<String> other_args = new ArrayList<String>();
for(int i=0; i < args.length; ++i) {
try {
if (“-m”.equals(args[i])) {
conf.setNumMapTasks(Integer.parseInt(args[++i]));
} else if (“-r”.equals(args[i])) {
conf.setNumReduceTasks(Integer.parseInt(args[++i]));
} else {
other_args.add(args[i]);
}
} catch (NumberFormatException except) {
System.out.println(“ERROR: Integer expected instead of ” + args[i]);
return printUsage();
} catch (ArrayIndexOutOfBoundsException except) {
System.out.println(“ERROR: Required parameter missing from ” +
args[i-1]);
return printUsage();
}
}
// Make sure there are exactly 2 parameters left.
if (other_args.size() != 2) {
System.out.println(“ERROR: Wrong number of parameters: ” +
other_args.size() + ” instead of 2.”);
return printUsage();
}
FileInputFormat.setInputPaths(conf, other_args.get(0));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
}
参考资料
http://www.powerxing.com/hadoop-build-project-by-shell/
http://blog.sina.com.cn/s/blog_68cceb610101r6tg.html
http://www.cppblog.com/humanchao/archive/2014/05/27/207118.aspx
来源URL:http://www.cnblogs.com/myresearch/p/mapreduce-compile-jar-run.html