插件
话说Hadoop 1.0.2/src/contrib/eclipse-plugin只有插件的源代码,这里给出一个我打包好的对应的Eclipse插件:
下载地址
注:hadoop 1.0.2以后是需要自己编译的hadoop-eclipse-plugin-1.0.2.jar。
下载后扔到eclipse/dropins目录下即可,当然eclipse/plugins也是可以的,前者更为轻便,推荐;重启Eclipse,即可在透视图(Perspective)中看到Map/Reduce。
配置
点击蓝色的小象图标,新建一个Hadoop连接:
注意,一定要填写正确,修改了某些端口,以及默认运行的用户名等
具体的设置,可见
正常情况下,可以在项目区域可以看到
这样可以正常的进行HDFS分布式文件系统的管理:上传,删除等操作。
为下面测试做准备,需要先建了一个目录 user/root/input2,然后上传两个txt文件到此目录:
intput1.txt 对应内容:Hello Hadoop Goodbye Hadoop
intput2.txt 对应内容:Hello World Bye World
HDFS的准备工作好了,下面可以开始测试了。
Hadoop工程
新建一个Map/Reduce Project工程,设定好本地的hadoop目录
新建一个测试类WordCountTest:
package com.hadoop.learn.test; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; import org.apache.log4j.Logger; /** * 运行测试程序 * * @author yongboy * @date 2012-04-16 */ public class WordCountTest { private static final Logger log = Logger.getLogger(WordCountTest. class ); public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable( 1 ); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { log.info( "Map key : " + key); log.info( "Map value : " + value); StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { String wordStr = itr.nextToken(); word.set(wordStr); log.info( "Map word : " + wordStr); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { log.info( "Reduce key : " + key); log.info( "Reduce value : " + values); int sum = 0 ; for (IntWritable val : values) { sum += val.get(); } result.set(sum); log.info( "Reduce sum : " + sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); if (otherArgs.length != 2 ) { System.err.println( "Usage: WordCountTest <in> <out>" ); System.exit( 2 ); } Job job = new Job(conf, "word count" ); job.setJarByClass(WordCountTest. class ); job.setMapperClass(TokenizerMapper. class ); job.setCombinerClass(IntSumReducer. class ); job.setReducerClass(IntSumReducer. class ); job.setOutputKeyClass(Text. class ); job.setOutputValueClass(IntWritable. class ); FileInputFormat.addInputPath(job, new Path(otherArgs[ 0 ])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[ 1 ])); System.exit(job.waitForCompletion( true ) ? 0 : 1 ); } } |
右键,选择“Run Configurations”,弹出窗口,点击“Arguments”选项卡,在“Program argumetns”处预先输入参数:
hdfs: //master:9000/user/root/input2 dfs://master:9000/user/root/output2 |
备注:参数为了在本地调试使用,而非真实环境。
然后,点击“Apply”,然后“Close”。现在可以右键,选择“Run on Hadoop”,运行。
但此时会出现类似异常信息:
12/04/24 15:32:44 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform… using builtin-java classes where applicable 12/04/24 15:32:44 ERROR security.UserGroupInformation: PriviledgedActionException as:Administrator cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator-519341271\.staging to 0700 Exception in thread “main” java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Administrator\mapred\staging\Administrator-519341271\.staging to 0700 at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:682) at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:655) at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:509) at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:344) at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:189) at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:116) at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:856) at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:850) at java.security.AccessController.doPrivileged(Native Method) at javax.security.auth.Subject.doAs(Subject.java:396) at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1093) at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:850) at org.apache.hadoop.mapreduce.Job.submit(Job.java:500) at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:530) at com.hadoop.learn.test.WordCountTest.main(WordCountTest.java:85)
这个是Windows下文件权限问题,在Linux下可以正常运行,不存在这样的问题。
解决方法是,修改/hadoop-1.0.2/src/core/org/apache/hadoop/fs/FileUtil.java里面的checkReturnValue,注释掉即可(有些粗暴,在Window下,可以不用检查):
...... private static void checkReturnValue( boolean rv, File p, FsPermission permission ) throws IOException { /** if (!rv) { throw new IOException("Failed to set permissions of path: " + p + " to " + String.format("%04o", permission.toShort())); } **/ } ...... |
重新编译打包hadoop-core-1.0.2.jar,替换掉hadoop-1.0.2根目录下的hadoop-core-1.0.2.jar即可。
这里提供一份修改版的hadoop-core-1.0.2-modified.jar文件,替换原hadoop-core-1.0.2.jar即可。
替换之后,刷新项目,设置好正确的jar包依赖,现在再运行WordCountTest,即可。
成功之后,在Eclipse下刷新HDFS目录,可以看到生成了ouput2目录:
点击“ part-r-00000”文件,可以看到排序结果:
Bye 1 Goodbye 1 Hadoop 2 Hello 2 World 2 |
嗯,一样可以正常Debug调试该程序,设置断点(右键 –> Debug As – > Java Application),即可(每次运行之前,都需要收到删除输出目录)。
另外,该插件会在eclipse对应的workspace\.metadata\.plugins\org.apache.hadoop.eclipse下,自动生成jar文件,以及其他文件,包括Haoop的一些具体配置等。
嗯,更多细节,慢慢体验吧。
遇到的异常
org.apache.hadoop.ipc.RemoteException: org.apache.hadoop.hdfs.server.namenode.SafeModeException: Cannot create directory /user/root/output2/_temporary. Name node is in safe mode.
The ratio of reported blocks 0.5000 has not reached the threshold 0.9990. Safe mode will be turned off automatically.
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirsInternal(FSNamesystem.java:2055)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2029)
at org.apache.hadoop.hdfs.server.namenode.NameNode.mkdirs(NameNode.java:817)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:597)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:563)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1388)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1384)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:396)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1093)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1382)
在主节点处,关闭掉安全模式:
#bin/hadoop dfsadmin –safemode leave
如何打包
将创建的Map/Reduce项目打包成jar包,很简单的事情,无需多言。保证jar文件的META-INF/MANIFEST.MF文件中存在Main-Class映射:
Main-Class: com.hadoop.learn.test.TestDriver
若使用到第三方jar包,那么在MANIFEST.MF中增加Class-Path好了。
另外可使用插件提供的MapReduce Driver向导,可以帮忙我们在Hadoop中运行,直接指定别名,尤其是包含多个Map/Reduce作业时,很有用。
一个MapReduce Driver只要包含一个main函数,指定别名:
package com.hadoop.learn.test; import org.apache.hadoop.util.ProgramDriver; /** * * @author yongboy * @time 2012-4-24 * @version 1.0 */ public class TestDriver { public static void main(String[] args) { int exitCode = - 1 ; ProgramDriver pgd = new ProgramDriver(); try { pgd.addClass( "testcount" , WordCountTest. class , "A test map/reduce program that counts the words in the input files." ); pgd.driver(args); exitCode = 0 ; } catch (Throwable e) { e.printStackTrace(); } System.exit(exitCode); } } |
这里有一个小技巧,MapReduce Driver类上面,右键运行,Run on Hadoop,会在Eclipse的workspace\.metadata\.plugins\org.apache.hadoop.eclipse目录下自动生成jar包,上传到HDFS,或者远程hadoop根目录下,运行它:
# bin/hadoop jar LearnHadoop_TestDriver.java-460881982912511899.jar testcount input2 output3
OK,本文结束。
来源URL:http://www.cnblogs.com/ppkevin/archive/2012/10/10/2718136.html